COURSE OUTCOME – UNDERGRADUATE MATHEMATICS HONOURS (CBCS SYSTEM)

NAME OF THE PROGRAMME: B.Sc(HONS) YEAR OF INTRODUCTION: 2018

COURSE (DUTCOME
COURSE NAME	Course outcomes
Semester-I CC-I (Calculus, Geometry and Differential equation) FM-75	 After successful completion of CC-I, a student will be able to Define and give examples of basic concepts points of inflection, envelopes, asymtotes, higher order derivative and curve tracing.
	 Apply the concept of reduction formulae to evaluate integral. Classify the conic section by the use of discriminant. Find the solution of exact differential equations, linear differential equations and Bernouli diefferential equations.
Semester-I CC-II (Algebra) FM-75	 After successful completion of CC-II, a student will be able to Define and supply examples of linear transformation, eigen value, eigen vector, arithmetic mean and geometric mean. Find the nature of roots of algebraic equations by the use of Descartes rule of sign. State the following theorems and outline their proofs: De Moivre's

	 theorem of arithmetic, Cayley-Hamilton theorem. Obtain inverse of matrices using Caylay-Hamilton theorem.
Semester-II CC-III (Real Analysis) FM-75	 After successful completion of CC-III, a student will be able to Define and give example of countable set, uncountable set, bounded set, unbounded set, sequence and series of real numbers. Find the limit of sequence using definition. Distinguish between convergent and divergent sequence and series.
Semester-II CC-IV (Differential equation and vector calculus) FM-75	 After successful completion of CC-IV, a student will be able to Define and give example of homogeneous , non- homogeneous differential equation, Wronskian, system of linear differential equations, vector triple dot and cross product. Compute limits, derivatives and integration of vector valued function.
Semester-III CC-V (Theory of reall functions and introduction of the metric space) FM-75	 After successful completion of CC-V, a student will be able to Define and give example of limit of functions, extrema, relative extrema, metric space, open and closed balls.

	 Determine the continuity and differentiability of functions defined on subsets of the real line State the following theorems and outline their proofs: intermediate value theorem, rolle's theorem, mean value theorem, Taylor's theorem and Darboux's theorem.
Semester-III CC-VI (Group theory –I) FM-75	 After successful completion of CC-VI, a student will be able to Define and give example of binary operation, algebraic structure, group, normal subgroup, center of a group, group homomorphism. State the following theorems and outline their proofs: Lagrange's theorem, Cauchy's theorem for finite abelian group, fist, second and third isomorphism theorem for group. Find the subgroup, center, normal subgroup for a given group
Semester-III CC-VII (Riemann integration and series of functions) FM-75	 After successful completion of CC-VII, a student will be able to Define and give example of Riemann integration, beta function, gama function, sequence and series of functions, fourier series and power series.

Semester-III SE-I (Logic and sets or C++)	 State the following theorems and outline their proofs: Fundamental theorem if integral calculus, theorems on continuity , derivability and integrability of the limit function of a sequence of functions, weierstrass approximation theorem. After successful completion of SE-I, a student will be able to
FM-75	 Analyse and demonstrate examples of truth table, conjunction, disconjunction, sets, venn diagram, finite and infinite set. Find the difference and symmetric difference of sets, union, intersection of sets.
Semester-IV CC-VIII (Multivariate calculus) FM-75	 After successful completion of CC-VIII, a student will be able to Analyse and demonstrate the examples of function of several variables, double integration over rectangular region, double integration in polar coordinates, triple integration, line integrations. Represent vectors analytically and geometrically and compute dot and cross products

	 Evaluate double and triple integrals for area and volume Differentiate vector fields State the following theorems and outline their proofs: Green's theorem, Stoke's theorem and Divergence theorem Find the divergence and curl of vector field
Semester-IV CC-IX (Ring theory and linear algebra -I) FM-75	 After successful completion of CC-IX, a student will be able to Define and give example of rings, subring, ideal, characteristics of ring, ring homomorphism, vector space, linear span, linearly dependence and independence, linear transformation. Apply the concept of isomorphism to isomorphic. State the following theorems and outline their proofs: first, second and third ring isomorphism theorem. Find the matrix of linear transformation, rank and nullity of transformation.
Semester-IV CC-X (Metric space and complex theory) FM-75	 After successful completion of CC-X, a student will be able to Analyse and demonstrate the example of connectedness, separation, compactness, fixed point, analytic functions.

	 State the following theorems and outline their proofs: Banach fixed point theorem, Cauch-gaursat theorem, Cauchy integral theorem. Define and analyze limits and continuity for complex functions
Semester-IV SEC-II (Graph theory or operating system linux) FM-75	After successful completion of SEC-II, a student will be able to
	• Describe and demonstrate basic properties of graphs, pseudo graphs, complete graphs, bipartite graph, trees and forests
	• Describe and apply the relationship between the properties of a matrix representation of a graph and the structure of the graph
Semester-V CC-XI(Group theory -II) FM-75	 After successful completion of CC-XI, a student will be able to Analyse and demonstrate the example of automorphism, inner automorphism,

	 external direct product, group action, stabilizer and kernels. State the following theorems and outline their proofs: generalized Caylay's theore, index theorem, syllow's theorem. Find class equation for a given finite group.
Semester-V CC-XII (Numerical methods – lab) FM- 75	 After successful completion of CC-XII, a student will be able to Derive numerical methods for approximating the solution of problems Analyze the error incumbent in any such numerical approximation Find the solution of integration by Trapezoidal rule, simsons 1/3 rd and 1/8 th rule.
Semester-V DSE-I (Probability and statistics or Linear programming) FM -75	 After successful completion of DSE-I, a student will be able to Define and give example of sample space, event, experiment, probability mass function, probability density function, expectation, variance, moment, joint commulative distribution function, joint probability density function, random variable. Find the moment generating function for a given probability density function.

	 Compute expectation, variance, conditional expectation. Apply the concept of conditional probability to show independent event.
Semester-V DSE-II (Number theory or mechanics) FM-75	 After successful completion of DSE-II, a student will be able to Analyse and demonstrate the concept of Diophantine equation, congruenc, divisibility and prime. State the following theorems and outline their proofs: Fermat's little theorem, fermat's two square theorem and chinese –remaider theorem. Find the solution of linear congruenc.
Semester-VI	After successful completion of
CC-XIII(Ring theory and linear algebra –II) FM- 75	 XIII, a student will be able to Define and give example of ploynomialrings, principle ideal doamain, unique factorization domain, dual basis, dual space, annihilator, inner product space, orthogonal complement and adjoint of a linear operator. Compute inner products and determine orthogonality on vector spaces, including Gram-Schmidt orthogonalization Identify self-adjoint transformations and apply the spectral theorem and

	 orthogonal decomposition of inner product spaces Find the annihilator of given subset or subspace of inner product space Find the eigen space of eigen value of a given linear transformation
Semester-VI CC-XIV(Partial differential equations and applications) FM-75	 After successful completion of XIV, a student will be able to familiar with the modeling assumptions and derivations that lead to PDEs, Recognize the major classification of PDEs and the qualitative differences between the classes of equations competent in solving linear PDEs using method of characteristics, method of separation of variable. Derive theheat equation, wave equation and laplace equation
Semester-VI DSE-III(Point set topology or Boolean algebra and automata theory) FM-75	 After successful completion of DSE-III, a student will be able to Define and illustrate the concept of topological spaces, subspace, continuous functions and homeomorphisms. Define and illustrate the concept of product topology and quotient topology

• Prove a selection of
theorems concerning
topological spaces,
continuous functions,
product topologies
• Define connectedness and
compactness, and prove a
selection of related
theorems
After successful completion of
DSE-IV, a student will be able to
Analyse and demonstrate
the concept of maximum,
minimum values of
polynomial, symmetric
function, reciprocal function
and equation.
• State the following
theorems and outline their
proofs: strums theorem and
Newton's theorem
• Apply the concept of
Descartes rule of sign to
investigate the possible
number of positive and
negative root of algebraic
equation

COURSE OUTCOME – GE (CBCS SYSTEM)NAME OF THE

PROGRAMME: B.Sc

YEAR OF INTRODUCTION: 2018

COURSE	OUTCOME
COURSE NAME	COURSE OUTCOME
Semester-1 GE-I (Calculus, geometry and Differential equation) (Group A)	After successful completion ofGE-I, a student will be able to
FM-75	 Define and give examples ofbasic concepts points of inflection, envelopes, asymtotes, higher order derivative and curve tracing. Apply the concept of reduction formulae to evaluate integral. Classify the conic section bythe use of discriminant. Find the solution of exact differential equations, linear differential equations and Bernouli differentialequations.
Semester-1 GE-I (Group Theory) (Group B) FM-75	After successful completion ofGE-I, a student will be able to
	 Define and give example ofbinary operation, algebraic structure, semigroup, group, normal subgroup, center of a group, group homomorphism. State the following theorems and outline their proofs: Lagrange's

	theorem,Cauchy's theorem for finite abelian group, fist, second and third isomorphism theorem for group. Find the subgroup, center, normal subgroup for a givengroup
--	---

Semester-2	After successful completion
GE-II(Algebra)	After successful completion
(Group A)	ofGE-II, a student will be
FM-75	able to
	• Define and supply
	examplesof eigen value
	and eigen vector of
	matrix, arithmetic mean
	and geometric mean.
	• Find the nature of roots
	of algebraic equations
	by theuse of Descartes
	rule of
	sign.
	 State the following
	theorems and outline
	theirproofs: De
	Moivre's theorem,
	fundamental theorem
	of arithmetic,
	Cayley-Hamilton theorem.
	Obtain inverse of
	matricesusing Caylay-
	Hamilton theorem.
	• Solve system of linear
	equations and find
	solutionset of linear
	system.
Semester-2 GE-II(Differential equation and Vector	After successful completion
calculus)	ofGE-II, a student will be
(Group B)	able to
FM-75	• Define and give example
	ofhomogeneous, non-
	homogeneous
	differential
	equation, Wronskian,
	system of linear
	differentialequations,
	vector triple dot and
	cross product.

	• Compute limits, derivativesand integration of vector valued function.
Semester-2 GE-II (Numerical methods) (Group C) FM-75	
Semester-3 GE-III (Calculus, geometry and Differential equation) (Group A) FM-75	 After successful completion of GE-III, a student will be able to Define and give examples ofbasic concepts points of inflection, envelopes, asymtotes, higher order derivative and curve tracing. Apply the concept of reduction formulae to evaluate integral. Classify the conic section bythe use of discriminant. Find the solution of exact differential equations, lineardifferential equations and Bernouli differential equations.

Semester-3	After successful completion
GE-III (Group Theory) (Group B)	of GE-III, a student will be
FM-75	able to
	 Define and give example ofbinary operation, algebraic structure, semigroup, group, normal subgroup, center of a group, group homomorphism. State the following theorems and outline their proofs: Lagrange's theorem, Cauchy's theorem for finite abelian group, fist, second and third isomorphism theorem for group. Find the subgroup, center, normal subgroup for a given
	group

Semester-4 GE-IV (Algebra) (Group A) FM-75	 After successful completion of GE-IV, a student will be able to Define and supply examplesof eigen value and eigen vector of matrix, arithmetic mean and geometric mean. Find the nature of roots of algebraic equations by theuse of Descartes rule of sign. State the following theorems and outline theirproofs: De Moivre's theorem, fundamental theorem of arithmetic, Cayley-Hamilton theorem. Obtain inverse of matrices using Caylay-Hamilton theorem. Solve system of linear equations and find solutionset of linear system.
Semester-4 GE-IV (Differential equation and Vector calculus) (Group B) FM-75	After successful completion of GE- IV, a student will be able to • Define and give example of homogeneous , non- homogeneous differential equation, Wronskian, system of linear differential equations, vector triple dot and cross product. Compute limits, derivatives and integration of vector valued function.